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Intrinsic microphysical irreversibility is the time asymmetry observed in
exponentially decaying states. It is described by the semigroup generated by the
Hamiltonian H of the quantum physical system, not by the semigroup generated
by a Liouvillian L which describes the irreversibility due to the influence of
an external reservoir or measurement apparatus. The semigroup time evolution
generated by H is impossible in the Hilbert space (HS) theory, which allows only
time-symmetric boundary conditions and a unitary group time evolution. This
leads to problems with decay probabilities in the HS theory. To overcome these
and other problems (nonexistence of Dirac kets) caused by the Lebesgue integrals
of the HS, one extends the HS to a Gel’ fand triplet, which contains not only
Dirac kets, but also generalized eigenvectors of the self-adjoint H with complex
eigenvalues (ER 2 i G /2) and a Breit±Wigner energy distribution. These Gamow
states c G have a time-asymmetric exponential evolution. One can derive the
decay probability of the Gamow state into the decay products described by L
from the basic formula of quantum mechanics 3(t) 5 Tr( | c G & ^ c G | L ), which in
HS quantum mechanics is identically zero. From this result one derives the decay
rate 3Ç (t) and all the standard relations between 3Ç (0), G , and the lifetime t R

used in the phenomenology of resonance scattering and decay. In the Born
approximation one obtains Dirac’ s Golden Rule.

1. EXTRINSIC VS. INTRINSIC MICROPHYSICAL
IRREVERSIBILITY

Irreversible time evolution of a microphysical system occurs extrinsi-

cally, as a result of interaction with an external system such as a reservoir

or a measuring apparatus, or intrinsically as derived from the dynamics of

the system. In the Hilbert space quantum mechanics, the time evolution
described by the Hamiltonian must be time reversible, leading to a widespread
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conclusion that intrinsic irreversibility does not exist. Several authors, how-

ever, noticed examples of a microphysical arrow of time. Before discussing

further these recent views, a brief exposition of extrinsic irreversibility is
given.

In the case of a system 6 interacting with a reservoir 5, the time

evolution of the density operator r (t) is given by the master equation [Prigog-

ine, 62; Davies, 76]

- r
- t

5 L r (t) (1)

The Liouville operator L takes the form

L r (t) 5 2 i [H, r (t)] 1 d H r (t) (2)

Without the term d H r (t), the equations (1) and (2) would be the von Neumann

equations describing the reversible time evolution of a (closed) isolated

quantum system, their solution being the unitary group evolution

r (t) 5 e 2 iHtr (0)e iHt; 2 ` , t , ` (3)

Since the Liouville operator of extrinsic irreversibility has the additional term

d H r (t), representing the effect of the reservoir 5 on the system 6, the state

no longer evolves according to the unitary group generated by the Hamiltonian
as in (3). Instead, under certain additional conditions on the term d H r (t), the

integration of equation (2) leads to a semigroup evolution

r (t) 5 L (t) r (0), L (t) 5 e Lt, for t $ 0 (4)

where L (t) is the Kossakowski ±Lindblad semigroup [Ghirardi, 86; Antoniou,

93]. The semigroup time evolution describes extrinsic irreversibility because

it applies to a combined system 6 ^ 5, where 6 does not act on 5, but 5
acts on 6.

The non-quantum mechanical term d H r in the right of equation (2) does

not come from the intrinsic dynamics of 6. It is an empirical term, in the
sense that every reservoir 5 has its own way d H to act on r (t). In this paper

we shall not discuss extrinsic irreversibility, but intrinsic irreversibility.

In contrast to extrinsic irreversibility, intrinsic irreversibility is inherent

to the dynamics of the quantum system; thus even closed (isolated) quantum

systems can have irreversible time evolution. The unitary group evolution
(3) is only a special case that applies to some (e.g., stationary), but not all

quantum systems. The conventional opinion was that irreversible semigroup

time evolution generated by the Hamiltonian of the quantum system is not

possible. However, some suggestions of intrinsic irreversibility and time

asymmetry in quantum physics have been mentioned in the past:
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1. According to the work of R. Peierls and his school [Garcia-Calderon,

76; Hernandez, 84; Mondragon, 91; Peierls, 54; Peierls, 79], irreversibility

is connected with the choice of initial and boundary conditions for the solu-
tions of the SchroÈ dinger equation. These new (purely outgoing) boundary

conditions lead to microphysical irreversibility.

2. T. D. Lee [Lee, 81] explained that the time reverse of a decay process

is highly improbable. The decay products have a fixed phase relationship. To

reverse this decay process would require the preparation of a state consisting of

two (or more) highly correlated incoming spherical waves with fixed relative
phase. However, it is practically impossible to build an experimental apparatus

that prepares two incoming waves with a fixed relative phase.

3. Ludwig [Ludwig, 83] noticed that a state w must be prepared first

(at t 5 0) before an observable | c (t) & ^ c (t) | can be measured in it. This implies

that a detector that is to register an observable in the state w must be turned

on during a time interval of positive time, i.e., at a time after the preparation
apparatus (e.g., accelerator) has been turned on. This means the observable

can only be translated to positive times, not to arbitrary negative times.

Consequently, the time evolution operator of the observable should form only

a semigroup U+(t) 5 eiHt, t $ 0. However, realizing that a time evolution

semigroup generated by the Hamiltonian was not possible within the mathe-
matics of the Hilbert space, Ludwig extrapolated this semigroup to all times

2 ` , t , ` .

4. Prigogine [Antoniou, 89; Petrosky, 91; Prigogine, 80; Prigogine, 92]

had emphasized for a long time that irreversibility is intrinsic to the dynamics

of the microsystem rather than caused by external influences of a reservoir

or a measurement apparatus. Consequently, he demanded that irreversibility
be connected with the Hamiltonian of the quantum system.

The most prominent example of intrinsic irreversibility is the time evolu-

tion of resonances. Resonances cannot be described within Hilbert space

(HS) quantum mechanics as autonomous systems. We shall show in this

paper that the same mathematics that had originally been introduced to justify
the Dirac formalism and the nuclear spectral theorem, namely the rigged

Hilbert space (RHS), also describes the irreversible decay of microsystems

and allows for a mathematical theory of the quantum mechanical arrow

of time.

2. HILBERT SPACE IDEALIZATION OF QUANTUM
MECHANICS

The first attempt to put the ideas of quantum mechanics into some

mathematical structure was achieved by Dirac [Dirac, 30]. Dirac introduced
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the bras ^ E | , ^ x | , the kets | E & , | x & , and an algebra of observables generated

by such operators as the Hamiltonian H, the position Q, the momentum P,

etc., demanding that they fulfill the eigenvector equations

H | E & 5 E | E & (5)

Q | x & 5 x | x &

In analogy to the basis vector expansion in the 3-dimensional space
-

x 5
( 3

i 5 1

-
e i x

i, Dirac postulated that the kets introduced form a complete basis

system. This means that any vector f can be written as

f 5 o
`

n 5 1
| En)(En | f ) 1 #

`

0

dE | E & ^ E | f & (6)

or as

f 5 #
`

2 `

dx | x & ^ x | f &

Here | En) are the eigenvectors of H with discrete eigenvalues En and | E & are

the eigenvectors of the Hamiltonian with eigenvalues E from a continuous

set (for which we choose R+). Comparing the basis vector expansion in the
3-dimensional case with Dirac’ s expansion, it is seen that the scalar products

x i 5
-

e i ?
-

x correspond to the factors (En | f ), ^ E | f & , and ^ x | f & . Consequently,

these factors were understood as scalar products measuring the components

of the vector f along the basis vectors formed by the eigenvectors of the

observable. This interpretation is mathematically sound in the case of discrete

eigenvectors | En), which are elements of some Hilbert space *. However,
for the continuous eigenvectors, the kets | E & or | x & are not in * and the

energy wavefunctions ^ E | f & or the position wavefunctions ^ x | f & are not

scalar products, but generalizations thereof.

The mathematics available at that time could not encompass Dirac’ s

formalism. In spite of this, it became the primary calculative tool for physi-

cists, without having any rigorous mathematical foundation. In fact, it was
not until Schwartz’ s theory of distributions [Schwartz, 50] that the Dirac

delta function became mathematically defined, and Gel’ fand’ s theory of RHS

[Gel’ fand, 64; Maurin, 68] that Dirac’ s kets | E & and | x & received a mathemati-

cal interpretation.

After Dirac’ s ideas, the first attempt at a rigorous mathematical theory

for quantum mechanics was provided by Weyl [Weyl, 28] and von Neumann
[Neumann, 31] using the mathematics that was available at that time: the

mathematics of the Hilbert space.

A Hilbert space (HS) is the completion of a linear space with scalar

product ^ w | F & 5 ( w | F ), which defines the norm | w | 5 ! ( w , w ). A linear
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space F with scalar product is incomplete if not all Cauchy sequences

have limit elements in that space. Physicists usually do not worry about the

completion of their Hilbert space; mathematicians call such spaces pre-Hilbert
spaces. The Hilbert space * is obtained by completing F , i.e., appending to

F all (limit elements of) Cauchy sequences. According to the HS formulation

of quantum mechanics [Neumann, 31] there is a one-to-one correspondence

between vectors in the Hilbert space and pure physical states, and between

self-adjoint operators on the Hilbert space and observables.

The wave function ^ x ) c & 5 c (x) gives the probability ) c (x) ) 2 D x to detect
the particle in the position interval D x. The wave function f (E ) 5 ^ E ) f & ,
in the energy representation, describes the energy distribution of, e.g., a

particle beam produced by the accelerator [ ) f (E ) ) 2 represents the energy

resolution of the experimental apparatus]. Physicists always associate smooth

functions with these quantities. In the Hilbert space formulation of quantum

mechanics, these wavefunctions are elements of the space of Lebesgue square-
integrable functions on the real line L 2(R) [Maurin, 80]. Elements of L 2(R)

are classes of Lebesgue square-integrable functions { c (x)} or { f (E )} that

may vary widely on a set of Lebesgue measure zero (e.g., all rational numbers).

One and the same wavefunction f (E ) can be given by any function in the

class { f (E )}, not only by the smooth function of this class. In addition there
are classes that do not contain a smooth function while still being Lebesgue

square-integrable. This feature contradicts physical intuition since the wave-

function connected with the experimental apparatus is always thought of as

a smooth function | f (E ) | 2. While it is true that the space of smooth (infinitely

differentiable and rapidly decreasing) functions 6 is a dense subset of L 2

(R), 6 is not complete in the norm defined by the scalar product. Insisting
on a complete topological vector space, mathematicians chose the Hilbert

space L 2 for quantum mechanics because the space 6, whose completion is

defined not by one norm, but by a countable number of norms | ? |1, | ? |2,. . . ,

| ? |p ,. . . , did not exist at that time.

To each smooth function c smooth(x) P 6 one can always find a class of

Lebesgue square-integrable functions { c (x)} to which c smooth(x) belongs, i.e.,
6 , L 2, but not vice versa: there are classes of Lebesgue square-integrable

functions { x (x)} P L 2 which do not contain any smooth function, because

the space of smooth functions 6 is not complete with respect to the norm

| c |2 5 * | c (x) | 2 dx. If experiments provide only smooth wavefunctions (they

measure only in a finite set of intervals and interpolate smoothly between

these intervals), then the space 6 should be sufficient for all states c connected
with experimental apparatuses. Thus the complete Hilbert space L 2 is too big.

On the other hand, the HS does not contain Dirac’ s kets and bras, because

the eigenstates of the continuous spectrum are not in the HS and certainly

the HS does not possess a complete basis system in the sense of (6). However
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these kets, e.g., the scattering ª statesº |
-

p & with momentum eigenvalue
-

p ,

have been very useful for scattering experiments. Thus the Hilbert space L 2

is also too small, since it does not contain these scattering states. We shall
therefore seek a formulation which will overcome these problems. As an

unexpected bonus, this new formulation will also contain vectors that repre-

sent exponentially decaying states and will describe irreversible processes

like quantum decays.

3. PROBLEMS WITH QUANTUM DECAY

Most practical computations in physics do not rely on the completeness

property of the Hilbert space and use only the pre-Hilbert space. However,

when investigating general properties of decay, the full mathematical structure

of the Hilbert space has led to general results which are not desirable for a

theory of decaying phenomena.
The first property of the HS formulation to note is that symmetry groups,

like the Galileo group and the PoincareÂgroup, are represented by unitary

operators. In the Hilbert space, for a system described by a Hamiltonian H,

the time evolution is given by a unitary group:

f (t) 5 e 2 iHtf (0) 5 U ² (t) f (0), 2 ` , t , ` (7)

and is reversible. Therefore, any physical state in the HS can be evolved to

any instant in the past and in the future. This defies physical intuition regarding

the evolution of resonance states backward to instances before their produc-

tion. Microphysical irreversibility, as exemplified by the time evolution of

resonances or decaying states, is ruled out by this unitary group evolution.
Another important feature of HS quantum mechanics relevant to decay

processes is that no exponential decay law can be obtained within the frame-

work of Lebesgue square-integrable functions [Khalfin, 72]. This result deals

with the time behavior of the survival probability of a given state f (0). The

survival probability is the probability to find, at any given time t, the state

f (0) in the time-evolved state f (t) 5 e 2 iHt f (0):

3S(t) 5 | ^ f (0) | e 2 iHt | f (0) & | 2 (8)

Khalfin’ s theorem states that there is no HS vector f (0) for which (8) obeys

the exponential law. This ª deviation from the exponential lawº has at least

so far not been confirmed experimentally. But since the mathematics of the

Hilbert space cannot predict the magnitude of such a deviation, it will always
remain an untestable mathematical prediction (because the deviation could

always be smaller than the available experimental accuracy). Therefore the

more practical attitude is to find a mathematical formulation that upholds

the empirical exponential law for the resonance state and attribute whatever
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deviations may be observed in the future to the admixture of some background.

The description of exponential decay can be best accomplished, as envisioned

by Gamow [Gamow, 28], if one uses an eigenvector c G [ | ER 2 i G /2 & of

the self-adjoint Hamiltonian that has a complex eigenvalue ER 2 i G /2,

H | ER 2 i G /2 & 5 (ER 2 i G /2) | ER 2 i G /2 & (9)

As mentioned above, such vectors do not exist in the HS, but they exist in

the RHS.

The strongest evidence for the inadequacy of the HS in the description

of decay phenomena is that the decay probability is zero for all time if it is

zero on a finite time interval. The decay probability is the probability for the

transition from a state f (t) 5 e 2 iHtf (0) 5 U ² (t) f (0) into the decay products

described by the subspace L * , *, where L is the projection operator on

the subspace of noninteracting decay products. This decay probability is

given by

3 L (t) 5 Tr( L | f (t) & ^ f (t) | ) (10)

Since the decay of a prepared quasistationary state starts at a finite time t .
t2 . 2 ` , the probability to detect the observable L in the state | f (t) & during

a time interval 2 ` # t1 , t2 should be zero. In other words,

#
t2

t1

3 L (t) dt 5 #
t2

t1

^ f (t) | L | f (t) & dt 5 0 (11)

Then it follows from Hegerfeldt’ s theorem [Hegerfeldt, 94] that, if f (t) 5
e 2 iHtf (0) P *, with the Hamiltonian H being self-adjoint and semibounded,

then 3 L (t) 5 0 for (almost) all t (future t . t2 and past t , t1). This means

that, according to the Hilbert space formulation, there can be no decay of a

state f (t) which has been produced at any finite time t2 ( Þ 2 ` ).

Summarizing, in HS quantum mechanics the time evolution is reversible,

there is no exponential decay law, and the decay probability is identically

zero. These are the underlying reasons that in practical calculations resonances

could not be described in the Hilbert space. Instead, resonances were success-

fully described by ª effective theoriesº as eigenvectors of some finite-dimen-

sional complex Hamiltonians [Lee et al., 57]. As will be seen, the RHS

provides a mathematical theory which can overcome the problems of the HS

theory. In addition, the RHS will contain a finite-dimensional subspace in

which the effective theories reappear as truncations of a complex basis vec-

tor expansion.
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4. RIGGING THE HILBERT SPACE INTO A GEL’FAND
TRIPLET

A rigged Hilbert space is constructed on the structure of a linear space
C with a scalar product ^ f | F & 5 ( | c & , | F & ) through the completion of the

space C with respect to different topologies. The completion of C with

respect to a topology t contains all the limit points of the Cauchy sequences

in the respective topology. The Hilbert space * is the completion of C with

respect to the norm topology t *. The space F is defined as the completion

of C with respect to a topology t F , stronger than the norm topology. Since
F and * are the completions of the same space C , F will be dense in *
with respect to the topology of the Hilbert space. The topology t F of the

space F is given by an infinite number of norms chosen such that the algebra

of observables in the space F becomes an algebra of continuous operators.

F 3 (and * 3 ) denote the space of continuous antilinear functionals over the

space F (and *). These antilinear functionals F ( f ) are denoted as F ( f ) 5
^ f | F & [or F (h) 5 ^ h | F & ] and are defined over the set f P F (or h P *).

There are more functionals | F & in F 3 than | F & in * 3 , and since * 3 5 *
(Frechet±Riesz theorem), one has constructed a triplet of spaces, called a

Gel’ fand triplet or RHS [Gel’ fand, 64; Maurin, 68]:

F , * 5 * 3 , F 3 (12)

The space F 3 is an extension of the Hilbert space *. The topology t F can

be chosen such that F 3 , unlike the Hilbert space *, contains ª eigenvectorsº

of a self-adjoint operator with eigenvalues belonging to the continuous spec-
trum, e.g., the Dirac kets. In addition F 3 contains ª eigenvectorsº of self-

adjoint operators with complex eigenvalues. The Dirac bra±ket ^ f | F & is just

an extension of the scalar product ( f , F ) in * [Bohm, 79].

In a scattering experiment one defines two sets of rigged Hilbert spaces,

one for the prepared in-states F 2 , and the other for the observed (detected)
out-states F + [Bohm, 89]:

F 2 , * 5 * 3 , F 3
2 (13)

and

F + , * 5 * 3 , F 3
pl

where F 5 F 2 1 F + and F 2 ù F + Þ 0. A vector f + P F 2 is what is

prepared as f in outside the interaction region, while a vector c 2 P F + is
what is registered as c out outside the interaction region.

The topology in the space F , and equivalently in the spaces F + and

F 2 , is always chosen in such a way that the operators representing the

observables are continuous (so bounded) operators on F (with respect to the
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topology t F ). In the Hilbert space the observables cannot be represented by

continuous operators (with respect to t * ). For example, in the Hilbert space,

if the operators P and Q satisfy the Heisenberg commutation relation, then
they cannot be both continuous operators in *, and in the standard representa-

tion neither P nor Q is a continuous operator. As F is a dense subspace of

the Hilbert space, all the operators that are used in the Hilbert space can be

redefined in F as restrictions to the space F . For each t F -continuous operator

A on F one can define its conjugate operator A 3 , as an extension of the HS

adjoint operator A ² .

^ A f | F & 5 ^ f | A 3 | F & for all f P F , F P F 3 (14)

As a result, we obtain a triplet

A ² | F , A ² , A 3 (15)

It should be noted that the conjugate operator A 3 can only be defined for a

t F -continuous operator A, and, consequently, is a continuous operator on

F 3 . The generalized eigenvector | F & of a continuous operator A is defined
by the following relation:

^ A f | F & 5 ^ f | A 3 | F & 5 v ^ f | F & for all f P F (16)

Ignoring the arbitrary vectors f , this is often also written as

A 3 | F & 5 v | F & (17)

or as

A | F & 5 v | F &

if A is essentially self adjoint. This method makes it possible to describe

ª eigenstatesº that cannot exist in the Hilbert space. Some of the generalized

eigenvectors are going to be the ordinary eigenvectors of the essentially self-

adjoint operator in the Hilbert space. But not all generalized eigenvectors

are elements of the Hilbert space. In particular, the Dirac kets, which describe
the scattering states, are generalized eigenvectors with eigenvalues belonging

to the continuous spectrum and are not in *. The Gamow vectors, which

describe the states with an irreversible time evolution, are also generalized

eigenvectors which are not in *, but their complex eigenvalues do not belong

to the Hilbert space spectrum of the Hamiltonian. The choice of F , given

by the choice of the topology t F , determines which set of generalized eigen-
vectors is possible for a given operator A in *. This choice of the spaces F ,

F +, and F 2 is made using physical arguments related to causality and initial

and boundary conditions. The initial conditions are determined by the setup

of the experiment. In the RHS formulation of quantum mechanics one uses
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the same dynamical equations as in the Hilbert space formalism, while the

initial (boundary) conditions are different from the HS boundary conditions.

The space * in the HS formalism describes all physical systems; for each
particular system only a dense subspace is used for practical calculations.

The spaces F , F +, and F 2 are specific for the particular physical system

under consideration.

5. GAMOW VECTORS AND THEIR PROPERTIES

The rigged Hilbert space was developed in order to accommodate Dirac’ s

kets and bras into a consistent mathematical structure, but the structure created

for Dirac’ s formalism provided a mathematical description for the states with
an irreversible time evolution, too. In the Hilbert space, an irreversible process

is possible only for an open system under the influence of an external reservoir.

There are no vectors in * which can represent isolated microphysical states

that can evolve irreversibly in time. In the RHS, decaying states which are

described by the Gamow vectors | z 2
R & [ | ER 2 i G /2 2 & evolve irreversibly in

time by a semigroup generated by the Hamiltonian.

The following are the properties of Gamow vectors describing

decaying states:

1. They are generalized eigenvectors of the Hamiltonian associated with

the complex eigenvalue ER 2 i G /2 (where ER and G are interpreted as the

resonance energy and the width of the resonance, respectively); i.e., the
following equation holds:

H 3 | z 2
R & 5 (ER 2 i G /2) | z 2

R & (18)

as a functional equation over all c 2 P F + [in the sense of (17)].

2. They are derived as functionals from the resonance pole term at

zR 5 ER 2 i G /2 in the second sheet of the analytically continued S-matrix.

3. They have a Breit±Wigner energy distribution

^ 2 E | c G & 5 i ! G /2 p
1

E 2 (ER 2 i G /2)
, 2 ` II , E , 1 ` (19)

(where the negative values of E are in the second Riemann sheet of the

S-matrix).

4. They are members of a basis system (like the Dirac kets | E & ), i.e.,
every prepared state vector f + P F 2 can be expanded as [Bohm, 97]

f + 5 o
`

n 5 1
| En) (En | f +) 1 o

N

i 5 1
| c G

i & ^ c G
i | f + &

1 #
2 ` II

0

dE | E + & ^ +E | f + & (20)
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(where 2 ` II indicates that the integration along the negative real axis is in

the second Riemann sheet). In contrast, the Dirac basis system expansion

(Nuclear Spectral Theorem of the RHS) is given by

f + 5 o
`

n 5 1

| En)(En | f +) 1 #
1 `

0

dE | E + & ^ +E | f + & (21)

where

c | En), n 5 1, 2, . . . , ` , are the stable eigenstates (bound state poles)

c | c G
i & 5 | Ei 2 i G i/2

2 & ! 2 p G i are the N decaying (Gamow) states (reso-

nance poles)
c | E + & , 0 # E , ` (Hilbert space spectrum) are the Dirac scattering states

c | E + & , 2 ` II , E # 0, are the latter’ s analytic continuation to the

negative real axis on the second sheet.

The important feature of the so-called complex spectral resolution (20) is

that the resonance states c G
i appear on the same footing as the bound states

| En), but together with the bound states they do not form a complete system;

there is in addition a ª background term.º

5. The time evolution, in general, is given by a semigroup generated by
the Hamiltonian for t $ 0 (a corresponding semigroup with t # 0 applies to

the exponentially growing Gamow vector c Å G P F 3
1 , which is associated with

the S-matrix pole at zR 5 ER 1 i G /2) [Bohm, 79]. The unitary time evolution

group applies only to the common Hilbert subspace of F 3
1 and F 3

2 . The time

evolution of the decaying Gamow state in particular is given by an exponen-

tial law:

e 2 iH 3 t | c G & ^ c G | e iHt

5 e 2 i(ER 2 i G /2)t | c G & ^ c G | e i(ER 1 i G /2)t 5 e 2 G t | c G & ^ c G | (22)

for t $ 0 only. This is understood as a functional equation over the space

of c 2 P F +. This time evolution is irreversible because e 2 iH 3 t (t $ 0) is

a semigroup.

6. DECAY PROBABILITY AND DECAY RATE IN RHS

In the RHS, the description of irreversible processes becomes possible.

Decaying states are described by Gamow vectors. A process in which a

microphysical state evolves in time and decomposes into a set of decay
products will be described as the transition of a Gamow vector c G into a set

of interaction free decay products.

In a decay experiment, the decaying state and the set of detected decay

products are described by different Hamiltonians. While the detected states
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evolve in time according to the free Hamiltonian H0 (since they are supposed

to be detected far away from the interaction zone), the decaying state is a

generalized eigenvector of the exact Hamiltonian H 5 H0 1 V, where V is
the interaction responsible for the decay. The eigenkets of the free Hamiltonian

| E, b & are assumed to be mapped into the eigenkets of the exact Hamiltonian

| E, b 2 & by the Lippmann±Schwinger equation

| E, b 2 & 5 | E, b & 1
1

E 2 H 2 i e
V | E, b & (23)

Examples of decay processes are the radiative decay of an excited atom

into its ground state (A* ® A 1 g ) with the emission of a photon, and the

decay of a K-meson (K 0 ® p + p 2 ) into two pions.
The decay rate 3Ç (t) of the c G(t) into the final noninteracting decay

products can be calculated as a function of time and leads to an exact Golden

Rule [with the natural linewidth given by a Breit±Wigner energy distribution

(19)]. In the Born approximation the Gamow vector c G goes into f d ( c G ®
f d, which is an eigenvector of H0 5 H 2 V; ER ® Ed and G /ER ® 0) and

the decay rate goes into Fermi’ s Golden Rule.
The time evolution of the ª pure Gamow stateº with resonance parameters

(ER , G ), initially described by the statistical operator W (0) 5 | c G & ^ c G | is

given, according to (22), by

W (t) 5 e 2 iHtW (0)e iHt 5 e 2 G tW (0) for t $ 0 (24)

This is mathematically defined only as a functional over c 2 P F +, where

F + is defined as the space connected with the decay products (ª out-statesº ).

This means that only ^ c 2 | W (t) | c 2 & makes sense mathematically.
The interaction-free decay products are described by the projection

operator L onto the space of the physical states of all the noninteracting

decay products:

L 5 # dE o
b

| E, b & ^ E, b | (25)

where | E, b & are the eigenvectors of the free Hamiltonian

H0 | E, b & 5 E | E, b & (26)

and b stands for all the possible labels of these eigenvectors. If the system

is described by a complete set of commuting operators B1, B2, . . . , BN , then
b will be given by the set b1, b2, . . . , bN of quantum numbers labeling the

degeneracy of the energy E [the b’ s can be the quantum numbers for the

orbital angular momentum, the photon polarization l g , some other intrinsic

quantum numbers like charges or channel labels, or the momentum directions
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( u k , w k) of the decay products]. We will use the index b for the whole set of

quantum numbers in order to simplify the formulas since the choice of these

labels will not change the results. For example, in (25), for the process
A* ® A 1 g ,

| E, b & 5 | E, u k , f k , l g . . . &

and

o
b

5 o
l g # d cos u k d f k o

? ? ?

where the dots stand for the quantum numbers of the atomic states.

The decay probability is the expectation value of the operator L for the

interaction-free decay products in the state W (t) of the decaying state. There-
fore it is given by the general formula for the expectation value of an

observable L in a state W (t):

3(t) 5 Tr( L W (t)) (27)

As explained in section 3, in the Hilbert space one can prove [with the

only assumption that H is self-adjoint and semibounded, which must always
be the case (stability of matter)] that 3(t) is either identically zero for all

times or it has been already different from zero in a time interval starting at

t 5 2 ` . This means that in the HS one predicts no decay for any state that

has been prepared at a particular time t0 ( Þ ` ). In the RHS one can derive

from (27), with W (0) given by | c G & ^ c G | and L by (25), that

3(t) 5 1 2 e 2 G t # dE o
b

| ^ E, b | V | c G & | 2
1

(E 2 ER)2 1 ( G /2)2

for t $ 0 (28)

In this derivation one uses (18), (24), and the Lippmann±Schwinger equation

(23) and one chooses as boundary conditions 3(t 5 ` ) 5 1 (meaning that
after a long enough time all the decay products have decayed and their decay

products have been measured) and 3(t 5 0) 5 0 (so that no decay product

is measured before the preparation of the decaying state is completed at time

t 5 t0 5 0).

An exact Golden Rule for the decay rate is obtained by taking the time

derivative of the transition probability 3 given in (28):

3Ç (t) 5 2 p e 2 G t # dE o
b

| ^ E, b | V | c G & | 2 G /2 p
(E 2 ER)2 1 ( G /2)2 (29)
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The decay rate 3Ç (t) has a Breit±Wigner distribution, whose width is G . This

is an exact formula from which one can obtain in the Born approximation

Fermi’ s Golden Rule if one inserts for the state c G the noninteracting state
f d with H0 f d 5 Ed f d. The Born approximation is defined by

^ E, b | V | c G & ® ^ E, b | V | f d &

ER ® Ed

(30)
G /2ER ® 0

G /2 p
(E 2 ER)2 1 ( G /2)2 ® d (E 2 ER)

In this approximation (30), the initial decay rate is obtained from (29) as

3Ç (0) 5 2 p # dE ( | ^ E, b | V | f d & | 2 d (E 2 ER) (31)

This is the standard Golden Rule for the transition from an excited noninter-

acting state f d into the set of all noninteracting decay products.

On the other hand, using the condition 3(0) 5 0, one obtains from (28)

in the limit (30)

G 5 2 p # dE ( | ^ E, b | V | f d & | 2 d (E 2 ER) (32)

Comparing this with (31), one obtains that

3Ç (0) 5 G (33)

From the exponential decay law in (28), for the survival probability 1 2
3(t) 5 e 2 G t, or from the exponential law in (29) for the decay rate, one

obtains that

G 5
1

t R

(34)

where t R is the lifetime of the resonance state. The results (31), (33), and

(34) and the identification of G with the imaginary part of the resonance pole

position zR of the analytically continued S-matrix are the standard relations

used in the analysis of resonance scattering and decay phenomena. They

have been justified by various more or less heuristic arguments, in particular
also by making use of the exponential law for the survival probability. But

they have not been derived from the basic formula (27) for the probabilities

in quantum mechanics, and they could not have been derived from this formula

because, applied to the probabilities of decay, this formula is identically zero
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in the HS formulation [Hegerfeldt, 94], as mentioned in Section 3. The

quantity that had been missing from the HS formulation, and which is needed

to provide the theoretical link between these important empirical formulas
and the basic formula for probabilities (27), is the Gamow vector. Gamow

vectors allow the description of resonances as elementary particles in very

much the same way as stable particles are described, either as poles of the

S-matrix or as energy eigenstates, except that for the Gamow states the energy

is the complex number ER 2 i G /2 and this requires the mathematics of

the RHS.
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